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Abstract—In this paper, we propose and empirically validate
a suite of hotspot patterns: recurring architecture problems that
occur in most complex systems and incur high maintenance costs.
In particular, we introduce two novel hotspot patterns, Unstable
Interface and Implicit Cross-module Dependency. These patterns
are defined based on Baldwin and Clark’s design rule theory,
and detected by the combination of history and architecture in-
formation. Through our tool-supported evaluations, we show that
these patterns not only identify the most error-prone and change-
prone files, they also pinpoint specific architecture problems that
may be the root causes of bugginess and change proneness.
Significantly, we show that 1) these structure-history integrated
patterns contribute more to error- and change-proneness than
other hotspot patterns, and 2) the more hotspot patterns a
file is involved in, the more error- and change-prone it is.
Finally, we report on an industrial case study to demonstrate
the practicality of these hotspot patterns. The architect and
developers confirmed that our hotspot detector discovered the
majority of the architecture problems causing maintenance pain,
and they have started to improve the system’s maintainability by
refactoring and fixing the identified architecture issues.

Keywords—Software Architecture, Software maintenance, Soft-
ware Quality

I. INTRODUCTION

Much research in the field of defect prediction [8], [22],
[21] and localization [14], [12], [19] has been proposed to
identify problems in source code using structural metrics,
evolution history, etc. In our recent work [31], we first explored
the relation between file error-proneness and software archi-
tecture. In that work we proposed a new architecture model
called the Design Rule Space (DRSpace). A DRSpace models
software architecture as a set of design rules and modules. By
calculating the interaction between DRSpaces and the set of
a project’s error-prone files, we observed that the most error-
prone files are typically highly architecturally connected, and
can be captured by just a few DRSpaces. We also observed
that each such error-prone DRSpace has multiple architectural
problems, or issues.

After examining hundreds of error-prone DRSpaces over
dozens open source and commercial projects, we have ob-
served that there are just a few distinct types of architecture
issues, and these occur over and over again. We saw these
issues in almost every error-prone DRSpace, in both open
source and commercial projects. Most of these issues, although
they are associated with extremely high error-proneness and/or
change-proneness, cannot be characterized by existing notions

such as code smells [7], [10] or anti-patterns [17], and thus
are not automatically detectable using existing tools. On the
other hand, a large portion of the source code “issues” de-
tected by existing industry standard tools, such as Sonar1 or
Understand2, are not causing notable maintenance problems.
This, then raises a serious question for a project manager or
architect: how to determine which parts of the code base should
be given higher priority for maintenance and refactoring?
Which “complex” files need to be fixed, as they are incurring
a huge maintenance penalty, and which ones can be left alone?

Based on Baldwin and Clark’s design rule theory [1] and
basic software design principles, we summarize these recurring
architecture issues (that are frequently the root causes of
high-maintenance costs) into five architecture hotspot patterns,
namely: (1) Unstable Interface, (2) Implicit Cross-module
Dependency, (3) Unhealthy Inheritance Hierarchy, (4) Cross-
Module Cycle, (5) and Cross-Package Cycle. Of these five
patterns, the first four are defined at the file level, and the
last one is defined at the package level. (1) is defined based
on the rationale that important interfaces (design rules) should
be stable [1]. (2) is defined based on the concept of true
modules, as described by design rule theory [1], [26], and
revealed by a design rule hierarchy clustering [30]. This pattern
aims to reveal hidden dependencies that connect modules that
appear to be mutually independent [29]. (3) detects architecture
structures that violate either design rule theory or Liskov
Substitution principles3. (4) and (5) are based on well-known
rationale of forming a proper hierarchy structure among mod-
ules and packages.

We have formalized these five patterns because we reg-
ularly encounter them in numerous error-prone spaces. Most
of these patterns, such as Unstable Interface, Implicit Cross-
module Dependency, and Unhealthy Inheritance Hierarchy,
have not been formally defined before and not detectable
by existing tools. For Implicit Cross-module Dependency and
Cross-module Dependencies, we define ”modules” as mutually
independent file groups revealed by a design rule hierarchy
(DRH) [30]. Like any catalog of patterns, we can not claim
completeness, just observational adequacy. We are open to add
more hotspot patterns if more recurring and high-maintenance
architecture problems are observed in the future. Furthermore,
based on our formalization, we are able to easily add new
hotspot patterns to our tool, and to automatically detect these

1http://www.sonarqube.org/
2https://scitools.com/
3https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start



issues in any code base.

Using nine open source projects and one commercial
project, we evaluated these patterns both quantitatively and
qualitatively. In our quantitative analysis, we investigate: 1)
if hotspots really capture the architecture problems that incur
expensive maintenance costs in terms of error-proneness and
change-proneness; 2) if the more patterns a file is involved in,
the more error-prone and/or change-prone it is; (3) if different
types of hotspots have different influence on file’s overall error-
proneness and change-proneness.

Our result shows that compared with average files in a
project, the files involved in these patterns have significantly
higher bug and change rates. By considering files involved in 0
to 4 file-level hotspot patterns, we observed that their bug rate
and change rate increase dramatically as the number of hotspot
patterns they are involved in increases. And of all the 4 file-
level hotspot patterns, Unstable Interface turns out to have the
most significant contribution to error- and change-proneness.

For our qualitative evaluation, we conducted an industrial
study to determine the usefulness of these hotspot patterns
in practice. We wanted to evaluate if these patterns reveal
major architecture problems that are valuable to the architect
and developers, and if, in addition to identifying where to
refactor, these patterns can provide clues about how to refactor.
In this case study, we identified two instances of Unstable
Interface patterns and one instance of Implicit Cross-module
Dependency, influencing more than 100 files. The architect and
developers in our study confirmed that our hotspot detector
discovered a majority of the architecture problems that are
causing maintenance pain. Furthermore based on the nature of
the patterns discovered, they were able to identify the hidden
dependencies behind the Implicit Cross-module Dependency
issue, and the two interfaces that have grown into ”God”
interfaces, thus needing to be refactored. They have started
to improve the maintainability of their system by refactoring
and fixing these architecture issues.

From the results of our evaluation, we have obtained
positive answers to the our research questions. Hotspot patterns
are strongly correlated with higher bug frequencies, change
frequencies, and with the effort to fix bugs and make changes.
And the more architectural issues a file is involved with, the
worse it fares, in terms of bugs and effort. Furthermore, in
our qualitative analysis we demonstrated that our approach is
effective in helping real-world developers find the structural
problems contributing to maintenance effort and helping them
conduct their refactoring.

The rest of this paper is organized as follows: Section 2
presents several background concepts. Section 3 describes the
theory and formalism underpinning our hotspot detection ap-
proach. Section 4 describes the details of our hotspot detection
tool. Section 5 presents our evaluation methods, analysis, and
results. Section 6 discusses the strengths and limitations of our
tool. Section 7 discusses related work and Section 8 concludes.

II. BACKGROUND

In this section, we introduce the fundamental concept
behind hotspot patterns: Design Rule Space (DRSpace). In our
recent work [31], we proposed DRSpaces as a new architecture

model. Instead of viewing software architecture as simply a set
of components and relations, we consider that architecture is
structured by design rules and independent modules, following
Baldwin and Clark’s design rule theory [1].

Design rules reflect the most important architectural de-
cision that decouple the rest of the system into independent
modules. In a software system, a design rule is usually
manifested as an interface or abstract class. For example,
if an Observer Pattern [9] is applied, then there must exist
an observer interface that decouples the subject and concrete
observers into independent modules. As long as the interface
is stable, addition, removal, or changes to concrete observers
should not influence the subject. In this case, the observer
interface is considered to be a design rule, decoupling the
subject and concrete observers into two independent modules.

Consider another example: if a system applies a pipe-and-
filter architecture pattern, then all the concrete filters become
independent modules, connected by pipes. Reflected in code,
the abstract Pipe class can be considered as an instance
of design rule. Since a system can apply multiple design
patterns, each pattern forms its own DRSpace. Accordingly,
we proposed that a software architecture should be viewed as
a set of overlapping DRSpaces.

A DRSpace contains a set of files and a selected set of
relations, such as inheritance, aggregation, dependency. These
files are clustered into a design rule hierarchy (DRH) [3], [30],
[4] to manifest the existence of design rules and independent
modules. The DRH algorithm clusters the files in a DRSpace
into a special form of hierarchical structure with the following
features: 1) the first layer of the architecture contains the
most influential files in the system, such as important base
classes, key interfaces, etc. These files are called the leading
files. 2) Files in higher layers should not depend on files in
lower layers. 3) Files within the same layer are grouped into
mutually independent modules. If the system is designed with
key architectural design rules, then the files reflecting these
design rules will be among the leading classes.

We visualize a DRSpace using Design Structure Matrix
(DSM). A DSM is a square matrix, whose rows and columns
are labeled with the files of the DRSpace in the same order. If
a cell in row x, column y, c:(rx,cy), is marked, it means that
file x is structurally related to file y or evolutionarily related
(i.e., file x and file y have changed together in the evolutionary
history). The cells along the diagonal model self-dependency.
Using our tool, Titan [32], the user can view and manipulate
DRSpaces.

The DSM in Figure 1 presents a DRSpace clustered into
a DRH with 4 layers: l1: (rc1-rc2), l2: (rc3-rc8), l3: (rc9),
l4: (rc10-rc18). The first layer l1 contains the most influential
design rules that should remain stable and they do not depend
on lower layer files. Files in the second layer l2 only depend
on first layer files. Similarly, files in the third layer l3 only
depend on the first two layers. Taking the second layer l2 as an
example, there are 2 mutually independent modules: m1: (rc3),
and m2: (rc4-rc8). We can recursively apply DRH clustering
on a complex module. For example, in m2, there are two inner
layers: (rc4-rc6) and (rc7-rc8).

The cells in a DSM can be annotated to illuminate relations
among the files. For example, cell(r3,c2) in Figure 1 is marked



Fig. 1: DRSpace clustered into DRH Structure with only structure relations

Fig. 2: DRSpace clusterd into DRH Structure with structure relations and evolutionary history

with “depend”, which means cassandra.utils.ByteBufferUtil
depends on cassandra.utils.FBUtilities. A DRSpace can also
reveal the evolutionary coupling between files. In Figure 2,
we see cells with a number representing the number of
times that these two files changed together in the project’s
evolution history. The cell with just a number means there
is no structural relation between these two files, but they
have nonetheless changed together. For example, cell(r3,c1) is
only marked with “14”, which means there is no structural
relation between cassandra.utils.ByteBufferUtil and cassan-
dra.config.DatabaseDescriptor, but they have changed together
14 times, according to the revision history. A cell with a num-
ber and text means that the two files have both structural and
evolutionary coupling. For example, cell(r9,c2) is marked with
“depend,38”, which means that cassandra.config.CFMetaData
depends on cassandra.utils.FBUtilities, and they have changed
together 38 times.

III. ARCHITECTURE ISSUES

According to Baldwin and Clark’s design rule theory [1],
a well-modularized system should have the following features:
first, the design rules have to be stable, that is, neither error-
prone nor change-prone. Second, if two modules are truly
independent, then they should only depend on design rules,
but not on each other. More importantly, independent modules
should be able to be changed, or even replaced, without
influencing each other, as long as the design rules remain
unchanged.

From the numerous DRSpaces we have processed, we have
observed that files in DRSpaces where these principles are

violated are associated with high error-proneness and change-
proneness. We summarize the forms of violations that occur
repetitively into a suite of Hotspot Patterns. Next we define
some basic terms and introduce the rationale and formalization
of these hotspot patterns.

A. Base Definitions

We use the following terms to model the key concepts
of a DRSpace: F—the set of all the files in the DRSpace:
F = {fi | i ∈ N}

M—the set of independent modules within layers: M =
{mi | i ∈ N}

fmi—a file in an independent module, mi.

cm(f)—the most inner module that contains file f .

We use the following notions to model structural and
evolutionary relations among files of a DRSpace:

depend(x, y): x depends on or aggregates y

inherit(x, y): x inherits from or realizes y

nest(x, y): x is the inner class of y

#cochange(x, y): the number of times x was changed
together with y in a given period of time.

SRelation(x, y) = depend(x, y) ∨ depend(y, x)
∨inherit(x, y) ∨inherit(y, x) ∨ nest(x, y) ∨ nest(y, x)



B. Hotspot Patterns

For each hotspot pattern, we now introduce their rationale,
description, and formalization.

1. Unstable Interface.
Rationale: Based on design rule theory, the most influential
files in the system—usually the design rules—should remain
stable. In a DRSpace DSM, the files in the first layer are always
the most influential files in the system, that is, they are the
leading files of the DRSpace. In most error-prone DRSpaces,
we observe that these files frequently change with other files,
and thus have large co-change numbers recorded in the DSM.
Moreover, such leading files are often among the most error-
prone files in the system, and most other files in their DRSpace
are also highly error-prone. We formalize this phenomenon
into an Unstable Interface pattern.

Description: If a highly influential file is changed fre-
quently with other files in the revision history, then we call
it an Unstable Interface.

Formalization:
Impactthr: the threshold of the impact scope of a file, fi.
If the number of files that structurally depend on it is larger
than the threshold, then we consider it as a candidate unstable
interface. In practice this threshold is larger than 50% of the
number of files in the DRSpace. And typically the files with
largest impact scope are the leading files.

cochangethr: the threshold for the frequency of two files
changing together. If two files changed together more than the
threshold, we say that they are evolutionarily coupled.

Changethr: the threshold of the number of files which
change together with a file, fi, more than cochangethr times.

For the file f1, if there are more thanImpactthr files which
structurally depend on it and there are more than Changethr
files which changed together with it more than cochangethr
times, we consider it as an Unstable Interface. Formally:

∃fi, f1 ∈ F | |SRelation(fi, f1)| > Impactthr ∧
|#cochange(fi, f1) > cochangethr| > Changethr, where
i ∈ [2, 3, 4, ..., n], n is the number of files in DRSpace DSM.
Impactthr, cochangethr and Changethr are the thresholds
that can be adjusted by an analyst.

In Figure 2, we can take file FBUtilities as an example,
which is one of the leading files. In this case, let Impactthr
be 10, Changethr be 8, and let cochangethr be 4. Thus
FBUtilities becomes an Unstable Interface. Because there are
more than 10 files in this DRSpace that structurally depend on
it and there are more than 8 files which changed together with
it more than 4 times in the project’s revision history.

2. Implicit Cross-module Dependency.
Rationale: Truly independent modules should be able to
change independently from each other. If two structurally
independent modules in the DRSpace are shown to change
together frequently in the revision history, it means that they
are not truly independent from each other. We observe that
in many of these cases, the modules have harmful implicit
dependencies that should be removed [24].

Description: Consider a DRSpace where file groups within
a layer form true modules that are mutually independent from

each other. Suppose there are two independent modules within
the same layer, m1, m2. If, for all the files in m1, there is no
structural relation with any of the files in m2, but there exist
files in m1 which change together with one or more files in
m2 more than cochangethr times, then we consider the two
modules follow a Implicit Cross-module Dependency pattern.

Formalization:
∃m1,m2 ∈ M ∧ ∀fmi ∈ m1 ∧ ∀fmj ∈ m2 |
¬SRelation(fmi, fmj) ∧ (∃fm1 ∈ m1 ∧ ∃fm2 ∈ m2 |
#cochange(fm1, fm2) > cochangethr), where i, j ∈
[1, 2, 3, ..., n], cochangethr is a threshold that can be adjusted
by an analyst.

In the DRSpace of Figure 2, the bottom layer: (rc10-rc18)
contains 6 mutually independent modules: m1:(rc10-rc11),
m2:(rc12-rc14), m3:(rc15), m4:(rc16), m5:(rc17), m6:(rc18).
All these modules should be able to change independently from
each other, however, the cells annotated with a number (more
than cochangethr) crossing modules in this layer reveal that
these modules do change together in the history, and that could
be considered as a Implicit Cross-module Dependency. In this
work we assume cochangethr to be 4.

3. Unhealthy Inheritance Hierarchy.
Rationale: We have encountered a surprisingly large number of
cases where basic object-oriented design principles are violated
in the implementation of an inheritance hierarchy. The two
most frequent problems are: (1) a parent class depends on one
of its children; (2) a client class of the hierarchy depends on
both the base class and all its children. The first case violates
the design rule theory since a base class is usually an instance
of design rules and thus shouldn’t depend on subordinating
classes. Both cases violate Liskov Substitution principle since
where the parent class is used won’t be replaceable by its
subclasses. In these cases, both the client and the hierarchy
are usually very error-prone.

Description: We consider an inheritance hierarchy to be
problematic if it falls into one of the two cases:

1) Given an inheritance hierarchy containing one parent
file, fparent, and one or more children, Fchild, there
exists a child file fi satisfying depend(fparent, fi)

2) Given an inheritance hierarchy containing one parent
file, fparent, and one or more children, Fchild, there
exists a client fj of the hierarchy, that depends on
both the parent and all its children.

Formalization:
∃fparent, Fchild ∈ F ∧ ∃fi ∈ Fchild | depend(fparent, fi) ∨
∃fj ∈ F | depend(fj , fparent) ∧ ∀fi ∈ Fchild |
depends(fj , fi), where i, j ∈ [1, 2, 3, ..., n], fj /∈ Fchild and
fj 6= fparent.

In Figure 2, we displayed some Unhealthy Inheritance
Hierarchy. For example, SSTableReader is the child file of
SSTable, but its parent file depends on it. Therefore, we
consider this as an Unhealthy Inheritance Hierarchy pattern.

4. Cross-Module Cycle.
Rationale: We have observed that not all cyclical dependencies
among files are equally harmful, and that the cycles between
modules—defined in the same way as in the Implicit Cross-
module Dependency—in a DRSpace are associated with more



defects. We thus define Cross-Module Cycle as another hotspot
pattern.

Description: If there is a dependency cycle and not all the
files belong to the same closest module, we consider this to
be a Cross-Module Cycle pattern.

Formalization:
∃fi ∈ F | depend(f1, f2) ∧ depend(f2, f3) ∧ · · · ∧
depend(fn−1, fn) ∧ depend(fn, f1) ∧ ¬(cm(f1) = cm(f2) =
· · · = cm(fn)), where i ∈ [1, 2, 3, ..., n] and n ≥ 2, n is the
number of files in the cycle.

In Figure 2, we have displayed some Cross-Module
Cycles. For example, AbstractReplicationStrategy →
DatacenterWriteResponseHandler →
NetworkTopologyStrategy → TokenMetadata →
AbstractReplicationStrategy form a Cross-Module Cycle.

5. Cross-Package Cycle.
Rationale: Usually the package structure of a software system
should form a hierarchical structure. A cycle among packages
is typically considered to be harmful.

Description: Given two packages P1, P2 of the DSM, there
exists files f1 in P1 and f2 in P2. Now, given some files fj in
P2 and fi in P1, if depend(f1, fj) and depend(f2, fi), then
we can say that these two packages create a Package Cycle,
that is, a cycle of dependencies between the packages.

Formalization:
∃f1, fi ∈ P1∧∃f2, fj ∈ P2 | depend(f1, fj)∧depend(f2, fi),
where P1, P2 are the packages of the system, i, j ∈
[1, 2, 3, 4, ..., n], n is the number of files in the system.

IV. TOOL SUPPORT

We have created a tool, called the Hotspot Detector that
automatically detects instances of these hotspot patterns. The
tool takes the following three inputs:

1) A DSM file that contains the structural dependencies
among the files, which we call a SDSM file. This
DSM file can be generated using Titan [32]. Titan
takes dependency information output by a reverse
engineering tool, and translates it into a SDSM file.

2) A DSM file that contains the evolutionary coupling
information of files within a DRSpace, which we call
a HDSM file. This DSM is organized such that a
number in a cell denotes the number of times two files
have changed together. A HDSM can be generated by
Titan from a revision history record, such as a SVN
log.

3) A clustering file that contains the clustering informa-
tion of the files. To detect a Cross-Package Cycle,
a clustering file that contains the package structure
of the files is used. To detect other types of hotspot
patterns, we are using a clustering file that represents
the DRH clustering.

Given these inputs, the Hotspot detector will output a
summary of all the architecture issues, the files involved in
each issue, and the DSMs containing the DRSpaces with these
issues. These DSMs can be viewed using Titan’s GUI.

V. EVALUATION

In this section, we report our evaluation subjects, methods,
quantitative and qualitative evaluation results.

A. Subjects

We choose nine Apache open source projects and one
commercial project as our subjects. We selected these Apache
projects to cover a wide variety of domains: Avro4 is a serial-
ization system; Cassandra5 is a distributed database; Camel6 is
a integration framework based on known Enterprise Integration
Patterns; CXF7 is a services framework; Hadoop8 is a tool
for distributed processing of large data sets; HBase9 is the
Hadoop database; Ivy10 is a dependency management tool for
software projects. OpenJPA11 is a Java persistence project.
PDFBox12 is a library for manipulating PDF documents. For
each project we obtained a snapshot of their latest release.
In Table I, we list some basic facts about these projects. In
our evaluation, we used their revision histories, issue records
and source code to obtain the HDSM, SDSM and clustering
files. Given these inputs, our tool calculated all the architecture
issues and involved files for each project snapshot.

TABLE I: Subject Projects

Subjects #Files #Commits #BugIssues SLOC
Avro-1.7.6 253 1488 629 180K
Camel-2.11.1 1203 17706 2110 869K
Cassandra-1.0.7 775 6738 1922 135k
CXF-2.7.10 3062 27266 3438 804K
Hadoop-2.2.0 1817 16003 4661 2.3M
HBase-0.94.16 1958 14861 4762 688K
Ivy-2.3.0 606 3799 799 308K
OpenJPA-2.2.2 1761 6744 1500 498k
PDFBox-1.8.4 589 1798 1098 116k
Commercial 797 2756 1079 56k

B. Evaluation Methods

For our quantitative analysis, we applied our hotspot de-
tection tool to the nine Apache projects and one commercial
project. For each of these projects, our tool detects all the files
involved in each issue. For our qualitative analysis, we applied
our architecture issue detection tool to the commercial project
and sent the detected architecture issues back to the project’s
architect and developers. Subsequent to sending the results we
conducted a brief survey and an interview with the architect.

To quantify error-proneness and change-proneness, we
first define the following four measures: 1) bug frequency
(bugFreq); 2) bug churn: the number of lines of code commit-
ted to fix a bug (bugChurn); 3) change frequency (changeFreq),
and 4) change churn: the number of lines of code committed to
make a change (changeChurn). These measures are calculated

4http://avro.apache.org/
5http://cassandra.apache.org/
6http://camel.apache.org/
7http://cxf.apache.org/
8http://hadoop.apache.org/
9http://hbase.apache.org/
10http://ant.apache.org/ivy/
11http://openjpa.apache.org/
12http://pdfbox.apache.org/



by mining change logs in the version control system and issue
tracking system used by the project.

Table II depicts a brief summary of the detected archi-
tecture hotspots for each project. Some files are involved in
multiple architecture hotspots, so the total ’#Files’ means
the total number of distinct files involved in all hotspots.
The first observation to make is that architecture hotspots are
indeed ubiquitous. Every project had at least one instance of
every type of hotspot, and in some cases there were thousands
of instances and thousands of files implicated. Architecture
hotspots are real, and they are not rare.

C. Quantitative Analysis

We assess the following questions to evaluate our approach
quantitatively:

RQ1. DO the files involved in architecture issues incur
more errors and cause significantly more maintenance effort
than average files? The answer to this question reveals if
the architecture issues we detect are real issues with high
maintenance costs.

RQ2. If a file is involved in greater numbers of architecture
issues, then is it more error-prone/change-prone than average
files? The answer to this requestion will indicate how these
issues impact the error- and change- proneness of files.

RQ3. Which types of architecture issues will cause more
error-proneness and change-proneness in files? We investigate
this question to understand if some issues have more significant
impact than others.

We defined a suite of measures and conducted statistical
analysis to answer these questions, as we will explain. These
questions are addressed by various measures of the outputs of
the hotspot detection tool, and statistical analysis of the results.

Given our measures of maintenance effort—bugFreq (BF),
bugChurn (BC), changeFreq (CF), changeChurn (CC)—we can
now perform a number of quantitative analyses to understand
the relationship between these measures and the detected
occurrences of architecture issues in a project.

To answer the first research question, for each measure, we
calculate the increase of its average value (measurei inc). Let
the measure’s average value over all files be avg measurei
and measure’s average value for files involved in architecture
issues be avg arch measurei. Then we calculated:

measurei inc =avg arch measurei−avg measurei
avg measurei

× 100%.

For each measure, Table III reports the increase in the
value of the measure. Note that the measures all increased,
over all projects, as expected. Specifically these results
demonstrate that the average measure for files involved in
architecture issues is larger than the average measure over
all files. The smallest increase is 39.49%, which is the
bugFreq (BF) of the OpenJPA project. The greatest increase
is the changeFreq of HBase, which is 219.88%. Our results
indicate that the files involved in architecture issues are
more error-prone than average files. Hence these files will
lead to more maintenance effort. To substantiate this claim

we employ the Paired t-Test to test whether the population
of avg arch measurei is significantly different than the
population of avg measurei over the 10 projects.

Null Hypothesis: H0, the population of avg measurei is
the same as the population of avg arch measurei.

Alternative Hypothesis: H1, population of avg measurei
is different from the population of avg arch measurei.

The last row of Table III shows that, for all measures,
H1 is accepted. This means that there exists a significant
difference between avg measurei and avg arch measurei
across all 10 projects. The four measures are consistently
and significantly greater for the files that exhibit architecture
issues. Therefore, we have strong evidence to believe that
files exhibiting architecture issues will cause more project
maintenance effort.

TABLE III: Increase in the measures’ average values for the
10 projects

Subjects BF inc BC inc CF inc CC inc
Avro-1.7.6 94.86% 80.04% 86.96% 78.41%
Camel-2.11.1 49.35% 48.31% 47.52% 44.11%
Cassandra-1.0.7 65.64% 64.80% 67.42% 66.12%
CXF-2.7.10 76.97% 70.88% 73.46% 67.98%
Hadoop-2.2.0 143.88% 136.50% 143.28% 126.76%
HBase-0.94.16 201.61% 219.88% 210.00% 210.04%
Ivy-2.3.0 87.23% 88.54% 76.87% 78.58%
OpenJPA-2.2.2 39.49% 68.42% 63.59% 63.78%
PDFBox-1.8.4 54.44% 50.43% 49.17% 42.86%
Commercial 119.05% 83.31% 80.67%% 78.27%

Accept α = 0.01 α = 0.04 α = 0.01 α = 0.02
H1 H1 H1 H1

Table IV answers the second research question. Since this
question concerns individual files, we only consider the 4 file-
level patterns in the quantitative analysis, that is: Unstable
Interface, Implicit Cross-module Dependency, Unhealthy In-
heritance Hierarchy, and Cross-Module Cycle. The remaining
pattern, Cross-Package Cycle is a package-level pattern.

In Table IV, column #AH indicates the number of ar-
chitecture hotspots that a file participates in. The table shows
that the more architecture hotspots a file is involved in, the
more maintenance effort it has caused. Consider Avro as an
example, the files involved in four architecture hotspots exhibit
an average bug frequency of 16.5, which is significantly higher
than the bug frequency of files that are only involved in three
hotspots, where the number is is only 7.9.

To answer this question more rigorously, we conducted
Pearson Correlation Analysis to test the dependency between
the number of issues a file involves (#AI) and the average
values of its four measures. The PC row, at the bottom
of Table IV shows the Pearson Coefficient value for each
measure. The PC values indicate strong correlations between
#AI and the avg measurei. That is, the more architecture
issues a file is involved in, the more maintenance effort it will
cause.

To answer RQ3 we needed to look at each hotspot pattern
independent of the others. Table IV shows the total number
of hotspots that files are involved in. But we want to analyze



TABLE II: Identified Architecture Hotspots

Avro-1.7.6 Camel-2.11.1 Cassandra-1.0.7 CXF-2.7.10 PDFBox-1.8.4
Type #Instances #Files #Instances #Files #Instances #Files #Instances #Files #Instances #Files
Unstable Interface 2 39 3 2653 3 219 3 104 1 57
Implicit Cross-module Dependency 7 33 77 447 49 249 136 1010 23 137
Cross-Module Cycle 40 34 533 139 11877 192 8054 244 577 152
Unhealthy Inheritance Hierarchy 61 88 303 409 138 190 635 705 239 221
Total 110 124 916 744 12067 448 8828 1504 840 337

Hadoop-2.2.0 HBase-0.94.16 Ivy-2.3.0 OpenJPA-2.2.2 Commercial
#Instances #Files #Instances #Files #Instances #Files #Instances #Files #Instances #Files

Unstable Interface 2 133 3 212 1 85 1 70 2 79
Implicit Cross-module Dependency 35 221 74 370 16 120 55 316 9 136
Cross-Module Cycle 1275 103 4939 203 15095 132 12119 345 25 32
Unhealthy Inheritance Hierarchy 140 236 196 278 104 139 826 719 102 141
Total 1452 469 5212 640 15216 294 13001 958 138 270

TABLE IV: Average values of measures for the subjects

Avro-1.7.6 Camel-2.11.1 Cassandra-1.0.7
#AH BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg
0 0.1 3.7 0.5 29.0 0 0.5 7.9 2.2 58.2 0 0.4 7.1 1.0 32.6
1 0.4 3.9 0.9 26.2 1 1.2 18.5 5.6 131.5 1 1.1 17.4 4.8 106.4
2 1.6 12.6 5.2 376.7 2 3.7 56.6 14.4 304.7 2 5.3 84.5 21.2 559.1
3 7.9 124.5 21.6 628.5 3 8.4 141.5 33.9 681.3 3 12.8 245.8 45.7 1202.0
4 16.5 255.0 33.5 1220.0 4 13.9 204.7 50.9 1043.5 4 18.8 364.9 65.7 1909.4
PC 0.91 0.89 0.94 0.95 PC 0.96 0.96 0.97 0.97 PC 0.97 0.96 0.98 0.97

CXF-2.7.10 Hadoop-2.2.0 HBase-0.94.16
#AI BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg
0 0.8 21.0 2.8 86.9 0 0.4 12.7 1.0 56.8 0 0.7 10.4 0.9 53.0
1 2.9 62.3 9.4 262.5 1 1.5 24.8 4.2 167.7 1 4.8 236.7 8.3 614.6
2 8.6 164.8 23.1 592.0 2 5.3 173.6 13.8 558.3 2 9.9 418.5 17.2 2083.6
3 20.2 390.9 52.5 1232.4 3 26.0 725.1 58.0 1959.6 3 47.8 1335.1 87.6 3158.7
4 54.1 890.2 142.3 3326.0 4 13.7 237.9 26.8 1252.0 4 76.7 2370.4 135.1 6019.0
PC 0.90 0.92 0.89 0.89 PC 0.76 0.63 0.72 0.83 PC 0.93 0.94 0.93 0.97

Ivy-2.3.0 OpenJPA-2.2.2 Pdfbox-1.8.4
#AI BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg #AI BF avg BC avg CF avg CC avg
0 0.2 4.5 1.1 31.8 0 1.8 10.0 1.1 36.8 0 0.5 27.1 1.1 92.0
1 1.1 22.8 3.3 79.6 1 3.2 31.1 3.7 111.5 1 1.4 35.9 2.9 136.5
2 2.9 54.6 8.4 251.9 2 4.6 64.5 7.5 229.8 2 1.5 64.1 3.4 259.9
3 7.0 119.9 20.9 646.2 3 10.8 408.6 22.4 862.5 3 8.1 495.0 13.7 861.3
4 6.4 204.6 18.6 792.3 4 25.1 981.0 52.5 2301.1 4 12.2 669.5 18.4 1254.4
PC 0.94 0.96 0.93 0.97 PC 0.90 0.88 0.90 0.88 PC 0.92 0.92 0.94 0.94

Commercial Project
#AI BF avg BC avg CF avg CC avg
0 0.1 2.25 2.7 102.5
1 0.2 4.6 5.9 200.4
2 0.8 3.24 10.3 372.0
3 2.8 36.8 19.8 884.7
4 6.0 21 29.0 549.0
PC 0.91 0.73 0.98 0.81

which hotspots have the greatest influence on a file’s over-
all error-proneness and change-proneness, and hence which
hotspots are the greatest contributors to technical debt. From
our analysis, we found that the files that suffered from Unstable
Interface and Cross-Module Cycle are extremely error-prone or
change prone.

Tables V-VIII report the increase in the value of the
measure attributable to each type of architecture hotspot. The
majority of the measures increased, over all projects’ all
architecture hotspots, as expected. These tables show that the
greatest impact in terms of average increase of the measures
is attributable to Unstable Interface and Cross-Module Cycle.
That is to say that, while all of the hotspots contribute to bug
frequency, change frequency, bug churn and change churn,
Unstable Interface and Cross-Module Cycle contribute the
most by far.

In summary, from our quantitative analysis we can make
the following observations: first, the hotspot instances we

TABLE V: Increase in the measures’ average values for the
files involved in Unstable Interface

Subjects BF inc BC inc CF inc CC inc
Avro-1.7.6 481.76% 465.36% 451.65% 401.94%
Camel-2.11.1 308.54% 299.26% 304.08% 268.38%
Cassandra-1.0.7 312.53% 312.29% 310.03% 307.35%
CXF-2.7.10 641.14% 527.52% 562.38% 466.19%
Hadoop-2.2.0 767.42% 865.54% 731.28% 650.65%
HBase-0.94.16 941.09% 998.32% 1005.96% 912.11%
Ivy-2.3.0 262.14% 269.47% 256.18% 282.43%
OpenJPA-2.2.2 421.47% 1159.18% 652.94% 825.40%
PDFBox-1.8.4 342.27% 432.11% 280.62% 285.49%
Commercial 555.54% 367.57% 269.49% 248.42%

detect capture file groups with significantly higher error-
proneness and change-proneness than average project files.
Second, when a file is involved in higher numbers of architec-
ture issues, its error-proneness and change-proneness increase
significantly. Third, the files suffering from the Unstable Inter-
face hotspot type are more error-prone and change-prone than



TABLE VI: Increase in the measures’ average values for the
files involved in Cross-Module Cycle

Subjects BF inc BC inc CF inc CC inc
Avro-1.7.6 309.68% 310.99% 265.64% 205.70%
Camel-2.11.1 241.43% 247.97% 204.94% 196.65%
Cassandra-1.0.7 165.94% 180.84% 159.03% 168.17%
CXF-2.7.10 275.71% 253.40% 231.89% 194.62%
Hadoop-2.2.0 432.89% 426.76% 405.52% 335.27%
HBase-0.94.16 489.95% 412.98% 511.54% 313.78%
Ivy-2.3.0 190.31% 236.15% 143.37% 161.60%
OpenJPA-2.2.2 75.37% 231.42% 147.87% 175.15%
PDFBox-1.8.4 104.83% 142.75% 82.43% 87.30%
Commercial 117.44% -8.32% 32.59% 80.09%

TABLE VII: Increase in the measures’ average values for the
files involved in Unhealthy Inheritance Hierarchy

Subjects BF inc BC inc CF inc CC inc
Avro-1.7.6 75.51% 77.00% 68.76% 53.25%
Camel-2.11.1 65.64% 67.00% 62.63% 59.81%
Cassandra-1.0.7 115.23% 116.20% 103.99% 112.42%
CXF-2.7.10 100.38% 96.57% 82.68% 75.90%
Hadoop-2.2.0 140.47% 113.26% 111.73% 82.86%
HBase-0.94.16 345.44% 285.83% 356.43% 212.19%
Ivy-2.3.0 108.46% 108.16% 92.27% 101.67%
OpenJPA-2.2.2 40.62% 84.67% 63.77% 64.00%
PDFBox-1.8.4 82.67% 99.87% 65.34% 75.67%
Commercial 106.36% 143.90% 53.23% 91.39%

the files suffering from the other architecture issues. However,
almost all of the measures in Tables V-VIII increased, which
means that all of the hotspots contribute to error-proneness and
change-proneness.

D. Qualitative Analysis

We conducted a qualitative analysis to evaluate whether
our architecture hotspot detection approach can capture the
architecture problems that an industrial architect considers
to be important and worth refactoring. We also wanted to
know if we could capture architecture problems that could not
be captured by other tools. Most importantly, we wanted to
know if the detected hotspots, in the form of DRSpace DSMs,
provided useful guidance to the architect about how to refactor.

We conducted a case study with a software company which,
for reasons of confidentiality, we refer to as “CompanyS”.
CompanyS shared project data with us for a project that we
refer to as “Commercial” [16]. Commercial has evolved for
about 4 years, with approximately 800 files and 56,000 SLOC.
The data received from CompanyS included the dependency
information reverse engineered by Understand, SVN logs, and
issue tracking records for the past two years.

Given these inputs, we used Titan to produce SDSM,
HDSM, and DRH clustering files as well as a package clus-
tering file. Then we used our hotspot detector to determine
all instances of hotspot patterns. We identified 3 groups of
files in Commercial with Unhealthy Inheritance Hierarchy
instances (UIH1 with 6 files, UIH2 with 3 files, and UIH3
with 7 files), one group of files with Implicit Cross-module
Dependency (ICD with 27 files ), and two groups of files
exhibiting Unstable Interfaces (UI1 with 26 files, UI2 with
52 files). We communicated these issues, in the form of 6
DRSpaces, back to the chief architect of CompanyS. We then

TABLE VIII: Increase in the measures’ average values for the
files involved in Implicit Cross-module Dependency

Subjects BF inc BC inc CF inc CC inc
Avro-1.7.6 34.96% -15.09% 51.70% -15.12%
Camel-2.11.1 7.44% 6.76% 12.43% 5.88%
Cassandra-1.0.7 11.09% 7.73% 15.27% 1.43%
CXF-2.7.10 11.29% 11.55% 16.43% 9.70%
Hadoop-2.2.0 45.83% 74.43% 41.21% 55.25%
HBase-0.94.16 26.72% 42.14% 24.40% 105.04%
Ivy-2.3.0 -14.93% -46.46% 7.29% 0.71%
OpenJPA-2.2.2 -4.88% -14.27% 14.94% 21.73%
PDFBox-1.8.4 36.53% -6.04% 42.06% -9.92%
Commercial 165.11% 119.10% 82.54% 74.39%

asked the architect a number of questions for each of the issues
identified.

First we asked whether each problem was, according to
him, a real architectural problem? The architect responded
that, of all the hotspots that we found, only UIH3 with 7
files has low maintenance costs. All of the other hotspots were
confirmed by the architect to be significant, high-maintenance
architecture issues.

Next we asked whether they planned to refactor and fix
these issues in the near future? The architect indicated that
they planned to refactor all five of the “serious” architecture
issues, with UIH2 , ICD, and UI1 being given the highest
priority. They also planned to refactor UHI and UI2 if they
have time.

Finally, we asked whether any of the issues we identified
were not revealed by the other tools that CompanyS used?
The architect pointed out that the Implicit Cross-module De-
pendency we identified revealed a fundamental problem that
was not detectable by other tools. This revealed a poor design
decision that caused a large number of co-changes among files
that had no structural relationship.

This feedback from CompanyS is extremely encouraging.
Furthermore, each instance hints at a corresponding refactoring
strategy. For example, an Unhealthy Inheritance Hierarchy
instance is displayed in a DSM with just the files involved in
the hierarchy, so their relations can be easily checked. If the
problem is that a parent class depends on one of its children,
then it is obvious that the classes should be refactored, perhaps
by moving some code from the child to the parent class, to
remove this improper dependency.

When one of the Unstable Interface instances was re-
ported, our collaborator realized that the interface was poorly
designed; it was overly complex, and had become a God
interface. Divide-and-conquer would be the proper strategy
to redesign the interface. Based on the analysis results we
provided, CompanyS is currently prosecuting a detailed refac-
toring plan to address these issues one by one.

Our qualitative evaluation results are also encouraging: the
fact that our collaborators not only confirmed the significance
of the architecture issues we reported, but also initiated actions
to refactor them one by one, demonstrated the effectiveness
of our tool. More importantly, the DSMs that visualize these
instances provided direct guidance about how each architecture
problem should be addressed.



VI. DISCUSSION

We now turn to a brief discussion of the limitations of our
tool, and threats to validity. First, although we have defined
five architecture hotspot issues in this paper, not all of them
are equally easy to calculate. Two of them: Unstable Interface
and Implicit Cross-module Dependency crucially depend on
the availability of the project’s evolution history. Thus, for
projects where this information is not available, it is impossible
to detect these architecture issues. Furthermore, when detecting
these two architecture issues, the results are related to the
selection of thresholds. Changing the value of the thresholds
will change the result sets. Determining the best thresholds and
sensitivity of the results to threshold values is ongoing work.

Second, while our tool is scalable in terms of the number
of hotspots that it can detect, at the moment we have just
five. We have no way of estimating how much of the space
of possible architectural issues these five hotspots cover. The
good news, however, is that when we do identify more types
of architecture issues (revealing structural problems) it is easy
to add these new types into our detection tool. Exploring more
types of architecture issues is therefore part of our future work.

Third, a threat to validity is in our data set. Because
we only selected nine Apache open source projects and one
commercial project to analyze, we can not yet say with
complete confidence that our results are generalizable across
all software projects. However, we chose projects of different
sizes and domains to partially address this issue. Furthermore,
we applied our tool on both open source and commercial
projects. We are in the process of applying our tool to more
projects, to further bolster the robustness of our results.

Finally, we can not guarantee that the four bug and churn
measures that we chose are the best proxies for maintenance
effort. We are, however, currently working with a commercial
project that is providing true effort data. We intend to report on
the results of this analysis in the future, to further demonstrate
the effectiveness of our tool and to validate the use of the
proxy measures.

VII. RELATED WORK

In this section we compare our approach with the following
research areas.

Defect Prediction and Localization: Selby and Basili [25]
have investigated the relation between dependency structure
and software defects. There have been numerous studies of
the relationship between evolutionary coupling and error-
proneness [8], [11], [5]. For example, Cataldo et al.’s [5]
work reported a strong correlation between density of change
coupling and failure proneness. And Ostrand et al. [23]’s
study demonstrated file size and file change information were
very useful to predict defects. The relation between various
metrics and software defects has also been widely studied.
For example, Nagappan et al. [22] investigated the different
complexity metrics and demonstrated that these metrics are
useful and successful for defect prediction. However, they
also reported that, in different projects, the best metrics for
prediction may be different. Besides, defect localization has
also been widely studied [14], [12], [19]. For example, Jones
et al. [14] used the ranking information of each statement to
assist fault location.

However, all the above works focus on individual files as
the unit of analysis, but do not take architectural structure into
consideration. Our study focuses on the architectural issues
which reveal problems in the software. Both file complexity
and architectural complexity are, we conjecture, contributors
to overall error-proneness in a software system.

Code Smell Detection: Fowler [7] describes the concept
of a “bad smell” as a heuristic for identifying refactoring
opportunities. Code clones and feature envy are examples of
well-known bad smells. Similarly, Garcia et al.’s [10] study
reports some architectural bad smells. Automatic detection of
bad smells has been widely studied. For example, Moha et
al. [20] presented the Decor tool and language to automate the
construction of design defect detection algorithms. There have
been a number of proposals for automatically detecting bad
smells which may lead to refactorings. For example, Tsantalis
and Chatzigeorgiou’s study [28] presented a static slicing
approach to detect extract method refactoring opportunities.
For some specific bad smells, such as code clones, there has
been substantial research on their detection. For example, Higo
et al. [13] proposed the Aries tool to identify possible code
clones leading to potential refactorings.

Our hotspot detection approach is different. First, our
approach focuses on recurring architecture issues, instead of
being confined to types of bad smells. Furthermore, multiple
bad smells are, we claim, instances of architecture issues.
Second, bad smells have been detected in a single version
of the software, while our approach considers a project’s
evolution history. In this way we can focus on the most recent
and frequently occurring architecture problems, and we can
detect problems that span multiple releases, such as Implicit
Cross-module Dependency and Unstable Interfaces, neither of
which could be detected by looking at a single snapshot of a
code base.

Architecture Research: Our work is also related to research
on software architecture representation and analysis. There has
been substantial study on the uses of architecture representa-
tions (views) [2], [18], [27], [6] and how they support design
and analysis. For example, Kruchten [18] proposed the 4+1
view model of architecture. Our architecture representation,
DRSpace, focuses on just a single architecture view—the
module view. Within the module view DRSpaces are organized
based on design rules and independent modules.

The analysis of architecture has also been widely studied.
Kazman et al. [15] created the Architecture Tradeoff Analysis
Method for analyzing architectures. Andrew [17] proposed the
anti-pattern to represent recurring problems that are harmful
to software systems. These methods depend, however, on the
skill of the architecture analysts. Our approach, by contrast,
can detect the architecture issues automatically and guide the
user, helping them to diagnose software quality problems.

VIII. CONCLUSION

In this paper, we have formally defined five architecture
issues—called hotspot patterns—that appear to occur ubiqui-
tously in complex software systems. The identified hotspots
pinpoint structural problems that contribute to technical debt—
bugginess, change-proneness, and increased costs of fixing



bugs and making changes. We proposed a formalism to repre-
sent these hotspots, and a novel tool to automatically detect and
identify the files involved in these hotspot patterns. We evalu-
ated our tool by examining nine Apache open source projects
and one commercial project. Our results show that hotspot
patterns are strongly correlated with higher bug frequencies,
change frequencies, and with the effort to fix bugs and make
changes. We also provided evidence that the more architectural
issues a file is involved with, the more likely it is error-prone,
and the more effort it takes to fix and modify. And we found
that the Unstable Interface and Cross-Module Cycle hotspot
patterns contributed the most to a file’s error-proneness and
change-proneness. Finally, we presented a qualitative analysis
wherein we demonstrated that our approach is effective in
helping real-world developers find the important structural
problems that contribute to high maintenance effort. More than
just finding the problems, the identified hotspots guide them in
conducting their refactoring. This research therefore provides
not just crucial insight into reducing the costs and risks of
long-term software sustainment, but provides a tool that helps
in automating the analysis.
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